

PRESENTATION OUTLINE

- Site History and Background
- PFAS Sampling Request
- PFAS Analysis Methods
- PFAS Sampling Procedures
- PFAS Sampling Results and Next Steps

- Manufactured printed circuit boards from 1968 1973
- Contamination discovered in 1982 at city drinking water well approximately 750 ft south of the site
- Completed Remedial Investigation from 1988 1990
 - Surface soil, subsurface soil, surface water, and groundwater sampling (over 400 samples)
 - Multiple surface geophysical surveys to identify karst features
 - Installed 33 monitoring wells
 - Borehole geophysical surveys and extensive hydraulic testing at 11 bedrock wells
 - Two dye trace tests

PFAS SAMPLING REQUEST

- Agencies requested a limited PFAS investigation because PFAS were used in the manufacture of electronic circuits and may warrant consideration in next five-year review.
- Although no evidence that PFAS were used at the site, it was agreed to analyze for specific PFAS that were used at some circuit board manufacturing facilities from 1968 – 1973, specifically, PFOA and PFOS.
- Approximately one year later, the Agencies requested that PFAS samples be analyzed for the full method reporting list, including...
 - PFAS that are not associated with circuit board manufacturing,
 - Were not developed or commercially available until after 1973, and
 - Do not have risk-based screening levels against which the results can be compared.

PFAS ANALYSIS METHODS

Method 533

Method 537.1

Method 8327

Method 1633

ASTM, ISO, DoD

PFAS ANALYSIS METHODS

- Drinking Water
 - Method 537/537.1
 - 537 developed in 2009 for 14 compounds
 - Revised to 537.1 in 2018 to include 4 addtl GenX compounds
 - Method 533
 - Developed in 2019 to include multiple short-chain compounds that cannot be measured by 537.1
 - Isotope dilution for drinking water
 - 25 compounds, including 11 not in 537.1

- Non-Potable Water
 - ASTM D7979-19
 - First validated method using LC/MS/MS
 - Developed through EPA Region 5
 - Method 8327
 - Finalized in November 2021
 - Similar to ASTM D7979, but no isotopic dilution
 - Method 1633
 - Draft method for 40 compounds in multiple media
 - EPA and DoD collaboration
 - TOF and Fluorine Screening Methods

PFAS SAMPLING PROCEDURES

- SOP Development
 - Sampling processes generally the same
 - No Teflon, Gore-Tex, fabric softeners, sunscreen, powered nitrile gloves, Tyvek, etc.
 - Yes HDPE, PVC, Rite in the Rain books, pens, alconox, etc.
 - 3 x 15 mL tubes, 4°C ± 2°C, 14 day prep time, 28 analysis time, no trip blank but duplicate and MS/MSD

PFAS SAMPLING RESULTS AND NEXT STEPS

- Sampling locations source area and upgradient, all hydrogeologic zones
- Results compared to RSLs. Did not compare to HAs b/c not applicable and in ppq range, below reporting limits
- Multiple compounds reported, but most are GenX compounds, not related to historical operations, or developed after site operations
- PFOA and PFOS were reported, but below RSL
- Perform second sampling event to confirm results
- Purge water disposal

		WellID	MW-7	SSC-11
	Sample Type Sample Date		N	N
			5/31/2022	6/3/2022
Analyte	Abbreviation	RSL		
Hexafluoropropylene Oxide Dimer Acid	HFPO-DA	60	< 50	610
Perfluorooctanesulfonic Acid	PFOS	40	< 9.9	< 10
Perfluoroundecanoic Acid	PFUnA	NE	< 50	< 50
N-Methylperfluorooctanesulfonamidoacetic Acid	N-MeFOSAA	NE	< 50	< 50
Perfluoropentanoic Acid	PFPeA	NE	< 50	59.0
Perfluoropentanesulfonic Acid	PFPeS	NE	< 9.9	< 10
Fluorotelomer Sulphonic Acid 6:2	FtS 6:2	NE	< 50	110 J+
N-Ethylperfluorooctanesulfonamidoacetic Acid	N-EtFOSAA	NE	< 50	< 50
Perfluorohexanoic Acid	PFHxA	NE	< 50	< 50
Perfluorododecanoic Acid	PFDoA	NE	< 50	< 50
Perfluorooctanoic Acid	PFOA	60	< 9.9	12.0 J+
Perfluorodecanoic Acid	PFDA	NE	< 50	< 50
Perfluorodecanesulfonic Acid	PFDS	NE	< 9.9	< 10
Perfluorohexanesulfonic Acid	PFHxS	390	< 50	< 50
Perfluorobutanoic Acid	PFBA	NE	< 50	< 50
Perfluorobutanesulfonic Acid	PFBS	6,000	12.0	< 10
Perfluoroheptanoic Acid	PFHpA	NE	< 50	< 50
Perfluoroheptanesulfonic Acid	PFHpS	NE	< 50	< 50
Perfluorononanoic Acid	PFNA	59	< 9.9	< 10
Perfluorotetradecanoic Acid	PFTeA	NE	< 50	< 50
Fluorotelomer Sulphonic Acid 8:2	FtS 8:2	NE	< 50	< 50
Perfluorononanesulfonic Acid	PFNS	NE	< 50	< 50
Perfluorotridecanoic Acid	PFTriA	NE	< 50	< 50
Perfluorooctanesulfonamide	PFOSA	NE	< 9.9	< 10
9CI-PF3ONS	9CI-PF3ONS	NE	< 9.9	< 10
Fluorotelomer Sulphonic Acid 4:2	FtS 4:2	NE	< 50	< 50
11CI-Pf3OUdS	11CI-Pf3OUdS	NE	< 9.9	< 10
4,8-Dioxa-3H-perfluorononanoic Acid	DONA	NE	< 9.9	< 10

QUESTIONS???

ANTHONY MOORE ENVIRONMENTAL WORKS, INC. ANTHONY@ENVIRONMENTALWORKS.COM 417-773-5747